当前位置: 滚动 > >正文

【光电智造】详解机器视觉如何检测安全气囊-全球关注

来源:面包芯语    时间:2023-05-16 18:20:50

摘要

利用图像处理与机器视觉技术开发了一套安全气囊检测系统,实现了对安全气囊生产过程某一工位处关键尺寸的亚像素测量。介绍了该检测系统的总体组成和主要工作流程; 分别介绍了该系统的软硬件设计; 并选取实际气囊对所开发的检测系统进行了可行性、有效性的验证。通过实验表明该系统的检测结果符合实际生产的要求。

21 世纪以来,汽车行业发展迅猛。安全气囊作为汽车的安全辅助工具,它的出现大大降低了死亡率,因而必须确保其尺寸精确,并能正常使用。对安全气囊传统的检 测方法主要是借助千分表、轮廓仪等工具进行人工抽检[1]。然而在长时间、大批量的工作模式下,工作人员由于身体条件、视觉疲劳等因素,造成产品误检率高,极大地 限制了生产效率和产品质量。


(相关资料图)

针对上述情况,开发了一套基于机器视觉的安全气囊检测系统,实现对安全气囊关键尺寸的亚像素测量。该系统具有非接触、实时、高精度、高效率的特点,可有效降低企业的人工成本,同时减少误检率和漏检率,提高企业的生产效率和经济效益。

1、视觉检测系统设计

1.1 尺寸测量技术要求

图 1 待检测的安全气囊实物图

1.2 系统的工作原理

视觉检测系统主要由光源、相机、计算机、执行机构等部分组合而成[2],如图 2 所示。其工作原理是: 照明光源发出平行光照射在检测工件上,工业相机采集图像,将光信号转换成图像数据传送给计算机,由计算机完成图像处理、分析和计算等,并将处理结果以信号的形式发送给执行机构,指导机器的运行。

1.3 系统的结构设计

该视觉系统的结构设计主要从硬件系统和软件系统两方面展开。

图 2 视觉检测系统的原理图

硬件系统包含机械装置、图像采集子系统以及计算机等部分,其中图像采集子系统是整个硬件系统的核心模块,由光源、相机以及照明系统等复合而成,其任务是对工件进行图像数据采集[3]。对图像采集子系统的设计主要从相机和光源的选型、光照模式的设计等两个方面入手。根据检测工件的表面属性和几何外形,结合检测指标为外轮廓尺寸和预缝线间距测量,决定选用 MER- 503- 20GM / C-P 相机,选择线性 LED 条形光源,以垂直照射的方式进行照明,如图 3( a) 所示。

软件系统是基于 Window 操作系统平台,依托 Visual Studio 2013 中 MFC 和开源图像处理库 OpenCV2.4.9 设计的 UI 界面,主要包括视频显示、图像结果显示、识别与测量及设备控制等功能模块,如图 3( b) 所示。图中左侧两个窗口分别为“视频显示窗口”和“图像结果显示窗口”;界面右侧从上到下依次是“串口通信窗口”、“设备控制窗 口”、“检测识别与测量窗口”以及“检测结果显示窗口”。

图 3 检测系统的结构设计

2、检测原理与算法实现

针对气囊的尺寸测量,采用基于灰度图像的边缘特征,通过滤波与增强,改善图像质量,锐化边缘细节,并通 过亚像素定位技术,提高边缘定位精度,最后通过对边缘 的直线拟合和直方图投影,进行尺寸测量,整个检测算法 流程如图 4 所示。

2.1 图像滤波

在进行图像采集和数据传输时,因受到图像传感器质量、环境光照等因素的影响,常常会引入无关的噪声,不利于后续图像识别。图 5 所示为采集图像的外轮廓和预缝线区域的局部图,可以看出图像含有大量的噪声点。

图 5 原始图像

在图像处理中,主要运用图像滤波进行噪声点的去除。目前,常用的滤波方法有高斯滤波、均值滤波和中值 滤波等。采用上述 3 种滤波方法分别对工件图像进行处理,同时以峰值信噪比( PSNR)[4]作为质量评价指标,最终决定采用高斯滤波对图像进行去噪处理。

高斯滤波是一种广泛使用的线性平滑滤波器,主要思路是对整幅图像进行加权平均,从而消除噪声点的影响, 其具体操作是: 通过高斯核的离散化窗口滑窗卷积来实现,高斯核是一个奇数的大小高斯模板。

高斯模板中的各个参数主要通过二维高斯函数计算给出,其具体公式如下:

式中 δ 表示标准差。标准差 δ 越小,表示滤波平滑效果越不明显。

采用高斯滤波对采集图像进行噪声点的去除,效果如 图 6 所示,可以看到噪声点被平滑处理掉,图像质量得到明显改善。

图6 高斯滤波后的图像

2.2 图像增强

经过高斯滤波之后的图像,噪声点被滤除,但是由于引入平均的效果,使得边缘细节变得模糊。为了抵消这种模糊的因素,应该增强图像的对比度。采用 Laplace 算子, 对图像边缘进行锐化处理。

Laplace 算子是一种各向同性的二阶微分算子[5],而图像的边缘灰度是阶跃变化的,在数学上表示为其二阶导数过零点,故可利用 Laplace 算子对进行图像锐化,可以有效地定位边缘点,并通过加强边缘的灰度值,使图像的对 比度增强,同时使边缘细节得到提升。

如图 7 所示,经过 Laplace 算子增强后,可以发现图像的对比度得到了提高,预缝线和外轮边缘也更加清晰,有利于后续图像边缘的检测。

图7 Laplace 图像增强后的效果

2.3 边缘检测

图像边缘指的是其周围像素灰度急剧变化的那些像 素的集合,它主要存在于目标、背景与区域之间,对图像进 行边缘检测是图像识别的重要步骤[6]。采用亚像素技术 对像素级边缘进行精细再分,提高了图像的分辨率,具体 实现过程如下:

(1)粗定位阶段,以像素为单位,进行传统的边缘检测;

(2)精定位阶段,采用图像处理算法,实现像素精细划分。在粗定位阶段,传统的像素级边缘检测算子主要有:

Roberts 算子、Prewitt 算子、Sobel 算子、Log 算子、Canny 算子等[7]。从定位精度和边缘细节两方面,对比上述检测算子的检测效果,如图 8 所示,可以发现 Roberts 算子、Prewitt 算子、Sobel 算子检测结果相似,能够准确定位边缘,但是边缘细节模糊,而 Canny 算子检测效果最佳,定位精度高,边缘连续性强,故在粗定位阶段采用 Canny 算子进行边缘检测。

图8边缘检测图

在精定位阶段,采用基于 Zernike 矩的亚像素边缘检测算法,并对阶跃阈值的选择进行改进,利用 Otsu 法( 大津法) 确定最佳分割阈值 T 作为阶跃阈值,对检测边缘进行精确定位。

改进的 Zernike 矩边缘检测算法具体步骤如下。步骤 1: 计算 Zernike 矩的 Z00、Z11 、Z20;

步骤2: 根据公式( 2) ,计算出Φ的值;

Φ= tan-1( Im[Z11]/Re[Z11]) ( 2)

步骤3: 利用Zernike 矩的旋转不变性,求得Z"00、Z"11、Z"20;

步骤5: 利用Otsu 法确定最佳分割阈值作为阶跃阈值 T; 步骤 6: 取距离阈值 δ,若满足条件 k ≥T 且 h≤δ,则该像素点即为边缘点。

通过 Otsu 法确定最佳分割阈值 T = 86,并设置距离阈值 δ 为一个像素单位,进行亚像素边缘检测,如图 9 所示。可以看出采用改进的 Zernike 矩边缘检测算法提取的图像边缘无毛刺,且连续性更强,为后续的高精度尺寸测量提供了保证。

图9 改进的Zernike 矩边缘检测效果图

2.4 尺寸测量

通过对气囊的边缘图像进行分析,发现外轮廓具有波 浪形边缘,而预缝线边缘具有明显的倾斜角度,并且含有 线头边缘,对测量产生极大的干扰,针对以上问题,分别提 出了基于直线拟合和直方图投影的测量算法,检测效果如 图 10 所示。

图 10 气囊尺寸测量效果图

1)直线拟合测量算法

对于外轮廓的尺寸测量,其核心步骤在于对轮廓的拟 合,最小二乘法是最常见的直线拟合方法,其具体步骤如下。

步骤 1: 采集图像上、下边缘,采用最小二乘法拟合基准直线 L1 和 L2;

步骤 2: 计算中心点( x0,y0) ,将上边缘 x 坐标均值作为 x0,根据直线 L2方程获取中心点位置;

步骤 3: 利用该中心点的基准直线 L1 的距离,进行测距。

2)直方图投影算法

首先对工件的边缘图像进行轮廓提取,同时获得每个轮廓的最小外接矩形,再依据面积和长宽比等几何特征, 定位预缝线检测区域 R1 和 R2,并记录其左上角顶点坐标,如图 10 所示。

对定位出的预缝线区域,进行直方图投影,其具体步骤是: 首先遍历 ROI 区域 R1 和 R2,统计区域内非 0 值像素的个数 Ni,以行数为横坐标,Ni 为纵坐标,绘制直方图,并记录直方图最大值所在位置行数,计为 I1max 和 I2max,如图 11 所示。结合 ROI 区域的位置坐标,作差即可求得预缝线间距。

图11 预缝线像素直方图

3、实验结果与分析

对本视觉系统进行重复性测量实验,即将气囊在相机视野中任意位置摆放 10 次,采用检测系统对气囊进行尺寸测量,并计算其测量均值和标准差,测量结果如表 1 所示。

通过表 1 可知,外轮廓测量均值为 205.55 mm,其标准偏差为 0.0317 mm,预缝线间距测量均值为 140.15 mm,标准偏差为 0.023 5 mm,标准偏差均在± 0.05 mm 之间,满足了生产实际的精度要求。同时为了更加直观体现,绘制其检测结果折线图如图 12 所示。

图12 零件检测结果折线图

由图 12 可知虽然该系统测得的数据整体比较理想, 测量结果基本在测量均值附近,但是也有个别数据会产生波动,出现这种情况,主要有以下几个方面原因:

镜头误差。由于镜头制造工艺的限制,使得镜头存在畸变,在光学成像时产生一定的误差。

环境误差。受到环境光照的影响,使得被测工件的边缘亮度和阴影产生变化,这将导致在边缘提取时产生 一定的误差。

算法误差。对外轮廓进行直线拟合时,由于轮廓具有波浪形边缘,使得拟合出的结果会存在一定的误差。

----与智者为伍为创新赋能----

联系邮箱:uestcwxd@126.com

QQ:493826566

X 关闭

精心推荐

Copyright ©  2015-2022 华声建筑工程网版权所有  备案号:京ICP备2021034106号-36   联系邮箱:55 16 53 8 @qq.com